Search results for " biodegradability"

showing 7 items of 7 documents

Assessment of landfill leachate biodegradability and treatability by means of allochthonous and autochthonous biomasses

2020

Abstract The biodegradability and treatability of a young (3 years old) municipal landfill leachate was evaluated by means of chemical oxygen demand (COD) fractionation tests, based on respirometric techniques. The tests were performed using two different biomasses: one cultivated from the raw leachate (autochthonous biomass) and the other collected from a conventional municipal wastewater treatment plant after its acclimation to leachate (allochthonous biomass). The long term performances of the two biomasses were also studied. The results demonstrated that the amount of biodegradable COD in the leachate was strictly dependent on the biomass that was used to perform the fractionation tests…

0106 biological sciencesHeterotrophBiomassBioengineeringAutochthonous biomaFractionationChemical Fractionation01 natural sciencesLandfill leachate03 medical and health sciences010608 biotechnologyBiomassLeachateLeachate biodegradabilityMolecular BiologySBR030304 developmental biologyBiological Oxygen Demand AnalysisPollutant0303 health sciencesSewageSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleChemical oxygen demandGeneral MedicineBiodegradationRespirometryKineticsBiodegradation EnvironmentalWastewaterEnvironmental chemistryEnvironmental scienceCOD fractionationWater Pollutants ChemicalBiotechnology
researchProduct

Biodegradable polymer-wood flour composites: main properties and biodegradability

2009

During the last years, a considerably increasing rate of attention has arisen on biodegradable polymers. In the meanwhile, the use of wood-plastic composites (WPC) has grown in importance, especially in the United States. The combination of biodegradable polymers and wood-based fillers allows obtaining the typical advantages achievable with the use of WPCs, with the further advantage of the biodegradability and compostability of the matrix (and not only of the filler). In this work, the characterization and the biodegradability assessment of Mater-Bi®-wood flour composites have been carried out.

Settore ING-IND/22 - Scienza E Tecnologia Dei Materialigreen composites biodegradable polymers biodegradability
researchProduct

ECOCOMPOSITI MATER-BI®/FARINA DI LEGNO: OTTIMIZZAZIONE DELLE PROPRIETA’ ATTRAVERSO ANALISI STATISTICA E BIODEGRADAZIONE

2009

ecocompositi analisi statistica full factorial biodegradabilitybiodegradable polymers biodegradable composites melt blending
researchProduct

Assessment of cross-flow filtration as microalgae harvesting technique prior to anaerobic digestion: Evaluation of biomass integrity and energy demand

2018

[EN] In the present study, the effect of cross-flow filtration (CFF) on the overall valorization of Chlorella spp. microalgae as biogas was assessed. The effect of CFF on microalgae cell integrity was quantified in terms of viability which was correlated with the anaerobic biodegradability. The viability dropped as the biomass concentration increased, whereas anaerobic biodegradability increased linearly with the viability reduction. It was hypothesized that a stress-induced release and further accumulation of organic polymers during CFF increased the flux resistance which promoted harsher shear-stress conditions. Furthermore, the volume reduction as the concentration increased entailed an …

filtration tangentielleEnvironmental Engineering020209 energymedia_common.quotation_subject[SDV]Life Sciences [q-bio]Anaerobic biodegradabilitydigestion anaérobieBiomassBioengineering02 engineering and technologyChlorellaEnergy balance010501 environmental sciences7. Clean energy01 natural sciencesAgricultural economicsValencianbilan énergétiqueintégrité cellulaireRegional developmentGratitude0202 electrical engineering electronic engineering information engineeringMicroalgaeHarvestingAnaerobiosisBiomassWaste Management and DisposalTECNOLOGIA DEL MEDIO AMBIENTE0105 earth and related environmental sciencesmedia_commonbioénergiemicro-algueEnergy demandRenewable Energy Sustainability and the EnvironmentCross-flow filtrationGeneral MedicinebiogazMicroalgae integritylanguage.human_languageAnaerobic digestionWork (electrical)13. Climate actionBiofuelscross-flow filtration;harvesting;microalgae integrity;anaerobic biodegradability;energy balance[SDE]Environmental ScienceslanguageChristian ministryBusinessFiltration
researchProduct

Characterization and biodegradability of biodegradable polymer-wood flour composites

2008

polymer composites wood flour biodegradability
researchProduct

EVALUATION OF BIODEGRADABILITY ON POLYSPARTAMIDE-POLYLACTIC ACID BASED NANOPARTICLES BY CHEMICAL HYDROLYSIS STUDIES POLYMER DEGRADATION AND STABILITY

2015

Here, the synthesis of two graft copolymers based on α,β-poly(N-2-hydroxyethyl)-D,L-aspartamide (PHEA) and poly(lactic acid) (PLA), the O-(2-aminoethyl)-O′-galactosyl polyethylene glycol (GAL-PEG-NH2) or the methoxypolyethylene glycol amine (H2N-PEG-OCH3) is described. Starting from the obtained PHEA-PLA-PEG-GAL and PHEA-PLA-PEG copolymers, polymeric nanoparticles were prepared by high pressure homogenization–solvent evaporation method. To demonstrate their biodegradability as a function of the matrix composition, a chemical stability study was carried out until 21 days by incubating systems in two media mimicking physiological compartments (pH 7.4 and pH 5.5). The degradability of both nan…

αβ-poly-(N-2-hydroxyethyl)-DL-aspartamide (PHEA) poly(lactic acid) (PLA) poly(ethylene glycol) (PEG) graft copolymers nanoparticles biodegradability
researchProduct

Evaluation of biodegradability of novel polymeric nanoparticles based on amphiphilic polylactide-polyaspartamide derivatives.

2015

αβ-poly-(N-2-hydroxyethyl)-DL-aspartamide (PHEA) poly(lactic acid) (PLA) poly(ethylene glycol) (PEG) graft copolymers nanoparticles biodegradability.
researchProduct